Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
J Dig Dis ; 24(4): 244-261, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-20242979

ABSTRACT

OBJECTIVES: Given the scale and persistence of coronavirus disease 2019 (COVID-19), significant attention has been devoted to understanding the relationship between human gut microbiota and COVID-19. In this systematic review we aimed to comprehensively assess the gut microbiota composition in patients infected with COVID-19 and those recovered from COVID-19 in comparison to healthy controls (HCs). METHODS: Peer-reviewed articles and preprints published up to September 1, 2022, were searched in Ovid MEDLINE, Ovid EMBASE, and SCOPUS. Observational studies reporting the gut microbiota profile in adult (≥18 years) COVID-19 patients or those recovered from COVID-19 compared to HCs were eligible for inclusion in this systematic review. The quality assessment of studies was performed using the Newcastle-Ottawa scale. RESULTS: We identified 27 studies comprising 18 studies that compared COVID-19 patients and six that compared recovered COVID-19 patients to HCs, while the other three studies compared both COVID-19 and recovered COVID-19 patients to HCs. Compared to HCs, decreased gut microbial diversity and richness and a distinctive microbial composition were reported in COVID-19 patients and recovered COVID-19 patients. In COVID-19 patients, Bacteroidetes were found to be enriched, and Firmicutes depleted. Decreased short-chain fatty acid (SCFA)-producing bacteria, such as Faecalibacterium, Ruminococcus, and Bifidobacterium, among others, were also observed in COVID-19 patients, which were not restored to normal levels in those who recovered. CONCLUSION: Gut dysbiosis was evident in COVID-19, and available data suggested that dysbiosis persisted even in recovered COVID-19 patients, with decreased Firmicutes and SCFA-producing bacteria.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Adult , Humans , Dysbiosis/complications , Dysbiosis/microbiology , Bacteria , Bifidobacterium , Fatty Acids, Volatile , Feces/microbiology
2.
Front Cell Infect Microbiol ; 12: 983089, 2022.
Article in English | MEDLINE | ID: covidwho-2198707

ABSTRACT

The gut microbiota undergoes significant alterations in response to viral infections, particularly the novel SARS-CoV-2. As impaired gut microbiota can trigger numerous neurological disorders, we suggest that the long-term neurological symptoms of COVID-19 may be related to intestinal microbiota disorders in these patients. Thus, we have gathered available information on how the virus can affect the microbiota of gastrointestinal systems, both in the acute and the recovery phase of the disease, and described several mechanisms through which this gut dysbiosis can lead to long-term neurological disorders, such as Guillain-Barre syndrome, chronic fatigue, psychiatric disorders such as depression and anxiety, and even neurodegenerative diseases such as Alzheimer's and Parkinson's disease. These mechanisms may be mediated by inflammatory cytokines, as well as certain chemicals such as gastrointestinal hormones (e.g., CCK), neurotransmitters (e.g., 5-HT), etc. (e.g., short-chain fatty acids), and the autonomic nervous system. In addition to the direct influences of the virus, repurposed medications used for COVID-19 patients can also play a role in gut dysbiosis. In conclusion, although there are many dark spots in our current knowledge of the mechanism of COVID-19-related gut-brain axis disturbance, based on available evidence, we can hypothesize that these two phenomena are more than just a coincidence and highly recommend large-scale epidemiologic studies in the future.


Subject(s)
COVID-19 , Neurodegenerative Diseases , Humans , COVID-19/complications , Brain-Gut Axis , Dysbiosis , SARS-CoV-2 , Brain
3.
Dig Dis Sci ; 67(12): 5407-5415, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1942112

ABSTRACT

The ongoing pandemic resulting from severe acute respiratory syndrome-caused by coronavirus 2 (SARS-CoV-2)-has posed a multitude of healthcare challenges of unprecedented proportions. Intestinal enterocytes have the highest expression of angiotensin-converting enzyme-2 (ACE2), which functions as the key receptor for SARS-CoV-2 entry into cells. As such, particular interest has been accorded to SARS-CoV-2 and how it manifests within the gastrointestinal system. The acute and chronic alimentary clinical implications of infection are yet to be fully elucidated, however, the gastrointestinal consequences from non-SARS-CoV-2 viral GI tract infections, coupled with the generalized nature of late sequelae following COVID-19 disease, would predict that motility disorders are likely to be seen in these patients. Determination of the chronic effects of COVID-19 disease, herein defined as GI disease which is persistent or recurrent more than 3 months following recovery from the acute respiratory illness, will require comprehensive investigations comprising combined endoscopic- and motility-based evaluation. It will be fascinating to ascertain whether the specific post-COVID-19 phenotype is hypotonic or hypertonic in nature and to identify the most vulnerable target portions of the gut. A specific biological hypothesis is that motility disorders may result from SARS-CoV-2-induced angiotensin-converting enzyme 2 (ACE2) depletion. Since SARS-CoV-2 is known to exhibit direct neuronal tropism, the potential also exists for the development of neurogenic motility disorders. This review aims to explore some of the potential pathophysiologic mechanisms underlying motility dysfunction as it relates to ACE2 and thereby aims to provide the foundation for mechanism-based potential therapeutic options.


Subject(s)
COVID-19 , Gastrointestinal Diseases , Gastrointestinal Motility , SARS-CoV-2 , Humans , Angiotensin-Converting Enzyme 2 , COVID-19/complications , Gastrointestinal Diseases/virology
4.
Front Oral Health ; 3: 887765, 2022.
Article in English | MEDLINE | ID: covidwho-1903244

ABSTRACT

The COVID-19 pandemic has brought health damage and socioeconomic disruptions, together with lifestyle disorders around the world. Children are one of the most commonly affected, mainly due to social isolation and changes in eating habits and physical activities. This way, the risk of weight gain and obesity is possibly enhanced, as well as poor oral hygiene conditions and early childhood caries (ECC) development during the lockdown. In children under 6 years of age, ECC is defined as carious lesions in one or more primary teeth, with or without cavitation. Importantly, alterations in the oral microbiome caused by changes in children lifestyles have much more than a local impact on oral tissues, interplaying with the gut microbiome and influencing systemic environments. Recent studies have been exploring the oral health conditions, eating habits, and weight gain in the childhood population during the COVID-19 pandemic; however, there is a lack of information concerning the association among oral and gut microbiome, dental caries, and obesity in the COVID-19 era. In this context, this review aimed at analyzing a possible relationship between the oral and gut microbiome, caries, and obesity in children during the COVID-19 pandemic.

5.
Front Cell Infect Microbiol ; 12: 804644, 2022.
Article in English | MEDLINE | ID: covidwho-1753360

ABSTRACT

Introduction: The Coronavirus Disease 2019 (COVID-19) pandemic caused by Severe Acute Respiratory Coronavirus 2 (SARS-CoV-2) emerged in late December 2019. Considering the important role of gut microbiota in maturation, regulation, and induction of the immune system and subsequent inflammatory processes, it seems that evaluating the composition of gut microbiota in COVID-19 patients compared with healthy individuals may have potential value as a diagnostic and/or prognostic biomarker for the disease. Also, therapeutic interventions affecting gut microbial flora may open new horizons in the treatment of COVID-19 patients and accelerating their recovery. Methods: A systematic search was conducted for relevant studies published from December 2019 to December 2021 using Pubmed/Medline, Embase, and Scopus. Articles containing the following keywords in titles or abstracts were selected: "SARS-CoV-2" or "COVID-19" or "Coronavirus Disease 19" and "gastrointestinal microbes" or "dysbiosis" or "gut microbiota" or "gut bacteria" or "gut microbes" or "gastrointestinal microbiota". Results: Out of 1,668 studies, 22 articles fulfilled the inclusion criteria and a total of 1,255 confirmed COVID-19 patients were examined. All included studies showed a significant association between COVID-19 and gut microbiota dysbiosis. The most alteration in bacterial composition of COVID-19 patients was depletion in genera Ruminococcus, Alistipes, Eubacterium, Bifidobacterium, Faecalibacterium, Roseburia, Fusicathenibacter, and Blautia and enrichment of Eggerthella, Bacteroides, Actinomyces, Clostridium, Streptococcus, Rothia, and Collinsella. Also, some gut microbiome alterations were associated with COVID-19 severity and poor prognosis including the increment of Bacteroides, Parabacteroides, Clostridium, Bifidobacterium, Ruminococcus, Campylobacter, Rothia, Corynebacterium, Megasphaera, Enterococcus, and Aspergillus spp. and the decrement of Roseburia, Eubacterium, Lachnospira, Faecalibacterium, and the Firmicutes/Bacteroidetes ratio. Conclusion: Our study showed a significant change of gut microbiome composition in COVID-19 patients compared with healthy individuals. This great extent of impact has proposed the gut microbiota as a potential diagnostic, prognostic, and therapeutic strategy for COVID-19. There is much evidence about this issue, and it is expected to be increased in near future.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , COVID-19/diagnosis , COVID-19/therapy , Dysbiosis/diagnosis , Dysbiosis/therapy , Gastrointestinal Microbiome/physiology , Humans , Prognosis , SARS-CoV-2
6.
Clin Nutr ESPEN ; 48: 220-226, 2022 04.
Article in English | MEDLINE | ID: covidwho-1693774

ABSTRACT

BACKGROUND & AIMS: Social distancing may lead to changes in lifestyle, such as the reduction in physical exercise practice, dietary changes, weight alterations, as well as intestinal rhythm. Our study aimed to investigate the intestinal transit rhythm of adults during social distancing due to the COVID-19 pandemic, in association with sociodemographic variables, physical activity, nutritional status, frequency of food intake, and water intake. METHODS: Our cross-sectional study comprised an online questionnaire that was shared by the internet concerning demographic information (sex and age); physical activity; anthropometric data (reported weight and height); dietary habits information (food frequency of simple high-carbohydrates foods, whole food, and processed foods; water intake; intestinal transit rhythm). The survey was conducted from April and July 2020. Statistical analysis was performed using Pearson's chi-square test (χ2) or Fisher's exact test, considering p < 0.05. RESULTS: During social distancing, 72.5% of the respondents presented an adequate intestinal transit rhythm, and 27.5% had inadequate intestinal transit rhythm (19.0% slow and 8.5% rapid intestinal transit rhythm). Intestinal transit rhythm differs between sex, with women presenting significantly higher odds for altered bowel rhythm, compared to men (OR (95% CI) = 2.324 (1.027-5.257); p = 0.043). Also, results showed that individuals who frequently ingest simple high carb foods have high prevalence of slow intestinal transit rhythm (63%, p = 0.032). CONCLUSION: In this study, we found a higher prevalence of adequate intestinal transit during social distancing due to the COVID-19 pandemic. Women had significantly higher odds for altered bowel rhythm, compared to men. Frequent consumption of simple carbohydrates was associated with a higher prevalence of slow intestinal transit rhythm.


Subject(s)
COVID-19 , Adult , COVID-19/epidemiology , Cross-Sectional Studies , Fast Foods , Female , Humans , Male , Pandemics , Pilot Projects
7.
Microorganisms ; 10(1)2021 Dec 27.
Article in English | MEDLINE | ID: covidwho-1638402

ABSTRACT

Obesity is becoming the most dangerous lifestyle disease of our time, and its effects are already being observed in both developed and developing countries. The aim of this study was to investigate the impact of gut microbiota on the prevalence of obesity and associated morbidities, taking into consideration underlying molecular mechanisms. In addition to exploring the relationship between obesity and fecal microorganisms with their metabolites, the study also focused on the factors that would be able to stimulate growth and remodeling of microbiota. Assessed articles were carefully classified according to a predetermined criterion and were critically appraised and used as a basis for conclusions. The considered articles and reviews acknowledge that intestinal microbiota forms a multifunctional system that might significantly affect human homeostasis. It has been proved that alterations in the gut microbiota are found in obese and metabolically diseased patients. The imbalance of microbiome composition, such as changes in Bacteroidetes/Firmicutes ratio and presence of different species of genus Lactobacillus, might promote obesity and comorbidities (type 2 diabetes mellitus, hypertension, dyslipidemia, depression, obstructive sleep apnea). However, there are also studies that contradict this theory. Therefore, further well-designed studies are needed to improve the knowledge about the influence of microbiota, its metabolites, and probiotics on obesity.

8.
Mol Med Rep ; 24(4)2021 10.
Article in English | MEDLINE | ID: covidwho-1395037

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disease amongst the middle­aged and elderly populations. Several studies have confirmed that the microbiota­gut­brain axis (MGBA) serves a key role in the pathogenesis of PD. Changes to the gastrointestinal microbiome (GM) cause misfolding and abnormal aggregation of α­synuclein (α­syn) in the intestine. Abnormal α­syn is not eliminated via physiological mechanisms and is transported into the central nervous system (CNS) via the vagus nerve. The abnormal levels of α­syn aggregate in the substantia nigra pars compacta, not only leading to the formation of eosinophilic Lewis Bodies in the cytoplasm and mitochondrial dysfunction in dopaminergic (DA) neurons, but also leading to the stimulation of an inflammatory response in the microglia. These pathological changes result in an increase in oxidative stress (OS), which triggers nerve cell apoptosis, a characteristic of PD. This increase in OS further oxidizes and intensifies abnormal aggregation of α­syn, eventually forming a positive feedback loop. The present review discusses the abnormal accumulation of α­syn in the intestine caused by the GM changes and the increased levels of α­syn transport to the CNS via the MGBA, resulting in the loss of DA neurons and an increase in the inflammatory response of microglial cells in the brain of patients with PD. In addition, relevant clinical therapeutic strategies for improving the GM and reducing α­syn accumulation to relieve the symptoms and progression of PD are described.


Subject(s)
Brain-Gut Axis/physiology , Disease Progression , Gastrointestinal Microbiome/physiology , Parkinson Disease/microbiology , alpha-Synuclein/metabolism , Aged , Bacteria/classification , Brain/metabolism , Dopaminergic Neurons/metabolism , Dysbiosis , Humans , Microglia , Middle Aged , Neurodegenerative Diseases , Oxidative Stress , alpha-Synuclein/genetics
9.
Gynakologe ; 54(6): 428-434, 2021.
Article in German | MEDLINE | ID: covidwho-1220461

ABSTRACT

This article focuses on particular aspects of infection prevention concerning the treatment of high-risk neonates in a neonatal intensive care unit (NICU). Furthermore, some aspects regarding severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) prevention and management in this setting are included. In addition we emphasize the important role of antibiotic stewardship in the NICU.

10.
Respirology ; 25(11): 1214-1215, 2020 11.
Article in English | MEDLINE | ID: covidwho-772378
SELECTION OF CITATIONS
SEARCH DETAIL